

Drinking Water Surveillance Program METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT

Annual Report 1988

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1988

FEBRUARY 1990

Copyright: Queen's Printer for Ontario, 1990 This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT 1988 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. Currently, 52 plants are being monitored.

The Metro Toronto (R.L. Clark) Treatment Plant is a conventional treatment plant that treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, disinfection and fluoridation. This plant has a design capacity of 655×1000 m3/day, and in conjunction with the R.C. Harris and Easterly plants, serves a population of approximately 2,333,000 people.

Water samples from the raw and treated sites and from one site in the distribution system were taken on a monthly basis. Parameters were divided into the following groups: Bacteriological, Inorganic and Physical (Laboratory Chemistry, Field Chemistry and Metals) and Organic (Chloroaromatics, Chlorophenols, Pesticides and PCB, Phenolics, Polynuclear Aromatic Hydrocarbons, Specific Pesticides and Volatiles). Specific Pesticides and Chlorophenols were analysed in June and November only.

A summary of results is shown in Table 1.

Inorganic and Physical parameters were all below any applicable health related ODWOs.

Of a total of approximately 110 Organic parameters tested for on a monthly basis, none exceeded health related guidelines.

During 1988 the DWSP sampling results indicated that the R.L. Clark Water Treatment Plant produced a good quality water at the plant and this quality was maintained in the distribution system.

DRINKING WATER SURVEILLANCE PROGRAM

METRO TORONTO (R. L. CLARK) WATER TREATMENT PLANT 1988 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. Currently, 52 plants are being monitored.

The DWSP was initiated at the R. L. Clark Water Treatment Plant in January of 1986. Annual reports were published for 1986 (ISBN 0-7729-2551-8) and 1987 (ISSN 0839-8976).

This report contains information and results for 1988.

PLANT DESCRIPTION

The Metro Toronto (R.L. Clark) Water Treatment Plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, disinfection and fluoridation. Superchlorination is used for disinfection and for taste and odour control. Sulphur

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At the distribution system location two types of samples were obtained: a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples are used to make an assessment of the amount by which the levels of inorganic compounds and metals may be changed on standing, due to leaching from (or deposition on), the plumbing system. The only analyses carried out on these samples therefore, are General Chemistry and Metals. The free flow sample represented fresh water from the distribution main that had been flowing at the sample tap for five minutes before being sampled.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. The retention time was calculated by dividing the volume of water between the two sampling points by the sample day flow. For example, if it was determined that the retention time within the plant was five hours then there would be a five hour interval between the raw and treated sample. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

FIGURE 1

DRINKING WATER SURVEILLANCE PROGRAM SITE LOCATION MAP R.L. CLARK WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM ANNUAL REPORT

GENERAL INFORMATION

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT

LOCATION:

45 23RD STREET TORONTO, ONTARIO M8V 3M6 (416 - 392 - 2905)

SOURCE:

RAW WATER SOURCE - LAKE ONTARIO

RATED CAPACITY:

655 (1000 M3/DAY)

OPERATION:

MUNICIPAL

<u>PLANT SUPERINTENDENT:</u> A. VUKOSAVLIJEVIC

MINISTRY REGION: CENTRAL

J. MILLS DISTRICT OFFICER:

MUNICIPALITY SERVED

POPULATION

and an other

and the second second

CITY OF TORONTO	615,000
CITY OF ETOBICOKE	298,490
CITY OF NORTH YORK	556,308
CITY OF SCARBOROUGH	461,957
CITY OF YORK	133,856
BOROUGH OF EAST YORK	97,679
REGION OF YORK (SOUTH)	170,000

Table 4 is a summary break-down of the number of water samples analysed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment (MOE) laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analysed in the DWSP.

Associated guidelines and detection limits are also supplied in Table 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

<u>General</u>

Water quality is judged by comparison with the Ontario Drinking Water Objectives (ODWOs) as defined in the 1984 publication (ISBN

Bacteriology

Positive results for the Bacteriology scan were present six times in the treated water and twelve times in the distribution system Site 1 water. In most cases the positive parameters were Standard Plate Count, Total Coliform and/or Total Coliform Background. The presence/absence (P.A.) test determined Coliform bacteria to be present within 48 hours in the August sample from distribution system Site 1.

Standard Plate Count results were all very low, indicating that good microbiological quality was being maintained in the distribution system.

Guidelines for bacteriological sampling and testing of a supply maintain a proper supervision of its developed to are bacteriological quality; the routine monitoring program usually requires the taking of multiple samples in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Further, bacteriological limits were developed in acknowledgement that the presence of coliforms may be detected due to their non-uniform distribution throughout the distribution system and the fact that their enumeration is subject to considerable variation. For these reasons, the occasional finding of low numbers of coliform organisms is not unexpected. Routine bacteriological monitoring, as outlined in the ODWOs is

for potential sewage pollution and its detection.

As part of the treatment plant process, hydrofluosilicic acid is added to the treated water (Table 3). Where fluoridation is practiced, the Fluoride concentration recommended in the ODWO is 1.2 mg/L, plus or minus 0.2 mg/L. This level was maintained.

The ODWO recommend a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters, to provide an acceptable balance between corrosion and incrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption. The hardness levels for the R.L. Clark water range from 127 to 145 mg/L.

Metals

e

n

e

ld

 \mathbf{r}

·У

Y

e

S

g

۱.

r

3

,

Y

е

n

The results reported for the Metals scan were below any healthrelated ODWOs.

Copper and Iron levels were lower in the treated water as compared to the raw water. This is a result of the treatment process. The addition of Alum as a coagulant to the raw water and the resulting coagulation/settling process has been shown to reduce the levels of most metals.

on	added in the treatment process.
at	
he	Organic Parameters
	Chloroaromatics
ng	The results of the Chloroaromatics scan showed that no
s,	chloroaromatices were detected.
om	
	Chlorophenols
	The results of the Chlorophenols scan showed that no Chlorophenols
or	were detected.
st	
	Pesticides and PCB (Polychlorinated Biphenyl)
	The results of the Pesticides and PCB scan showed that no PCBs were
.ly	detected and that two pesticides were detected:
en	Alpha BHC
er	Lindane
s.	
Al	There are several isomers of BHC (Benzene Hexachloride); gamma BHC
he	is the active ingredient of the pesticide Lindane, while Alpha BHC
al	is the predominant isomer found in surface waters from the Great
ito	Lakes Basin DWSP.
he	
.ng	Alpha BHC was detected at trace levels, nine times in the raw
of	water, nine times in the treated water and eight times in the
um	distribution system Site 1 water.

other than Trihalomethanes(THMs), were detected:

er,		Benzene
ion		Toluene
		Ethylbenzene
		Meta & Para-Xylene
		Ortho-Xylene
fic		Styrene
		Methylene Chloride (Dichloromethane)
		Carbon Tetrachloride
		Tetrachloroethylene
	Section of the sectio	

the Benzene was detected at trace levels, twice in the treated water in sample.

1.0 Toluene was detected at trace levels, once in the raw water, four ter times in the treated water and twice in the distribution system the Site 1 water. The detection of toluene at low, trace levels is a nds laboratory artifact derived from the analytical methodology. The ral purge-and-trap analytical technique depends on the purging of the volatile organics in the water sample with helium gas onto a Tenax trapping column. The volatile materials are subsequently thermally desorbed, separated and quantified. Tenax, a toluene-like polymeric material, tends to decompose sporadically upon heating into toluene and other aromatic componenets (ethylbenzene and xylene) giving instrument blanks in the order of 0.05 ug/L.

rs,

in

ly,

THMs are acknowledged to be produced during the water treatment process and will always occur in chlorinated surface waters. THMs in drinking water are comprised of Chloroform, Chlorodibromomethane raw and Dichlorobromomethane. Bromoform occurs occasionally. Results the are reported for the individual compounds as well as for total THMS.

and Chloroform, Chlorodibromomethane, Dichlorobromomethane and Total
 els, THMs were always detected in the treated waters. Chloroform was detected at trace levels, four times in the raw water. Bromoform was detected, at trace levels ten times in the treated water and nine times in the distribution system Site 1 water. All THM occurrences, ranging from 15.8 ug/L to 43.15 ug/L, were well below the ODWO of 350 ug/L for Total THMs.

ther

o be

THMs were not detected in the October treated water sample, the same sample did not have the added amount of fluoride, indicating the that in fact for the volatile scan a raw water sample was substituted in error for a treated water, thus the 'NSS' not suitable sample remark.

the

raw

r.

Comparison with the results of analyses from the DWSP in 1986 and 1987 shows that the raw and treated water quality to present has remained consistent at the R. L. Clark Water Treatment Plant.

ers,

mple

was

TABLE 3

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) SAMPLE DAY CONDITIO 1988

SAMPLE DAY CONDITIONS

TREATMENT CHEMICAL DOSAGES (MG/L)

			PRE-CHLORINATION	COAGULATION	POST-CHLORINATION	FLUORIDATION	DECHLORINATION	CHLORAMINATION
DATE	RETENTION TIME(HRS)	FLOW (1000 M3)	CHLORINE	ALUM LIQUID	CHLORINE	HYDROFLUOSILICIC ACID	SULPHUR DIOXIDE	AMMONIUM ANHYDROUS
JAN 19	7.5	484.0	01.51	03.02	00.60	01.01	00.39	••••••
FEB 16	7.5	424.0	00.79	03.02	02.52	01.01	01.70	•
MAR 21	7.4	485.0	00.79	05.05	02.52	01.01	01.20	
APR 19	7.1	534.0	00.79	03.02	02.02	01.01	01.20	00.20
MAY 17	6.2	573.0	00.79	05.05	02.02	01.20	01.01	99.20
JUN 21	5.3	700.0	01.51	10.09	01.51	01.01	01.39	·····
JUL 19	7.5	494.0	01.51	07.05	01.70	00.97	01.07	00.20
AUG 16	7.0	518.0	00.79	03.02	02.02	01.01	00.69	00.20
SEP 20	7.7	456.0	00.79	03.02	00.79	00.82	00.20	00.20
OCT 18	7.5	481.0	00.79	03.02	00.69	00.97	00.20	00.20
NO√ 22	9.6	384.0	00.79	05.05	00.69	00.97	00.39	
DEC 12	7.5	467.0	01.51	03.02	00.79	01.14	01.20	00.20

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

SUMMARY TABLE OF RESULTS (1988)

		RAW			TREATED			SITE 1		
SCAN	PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
CHEMISTRY (LAB)	CALCIUM	12	12	0	11	11	0	20	20	0
	CYANIDE	11	0	0	11	0	0	10	0	0
	CHLORIDE	12	12	0	11	11	0	20	20	0
	COLOUR	12	2	10	11	0	10	20	0	20
	CONDUCTIVITY	12	12	0	11	11	0	20	20	0
	FLUORIDE	12	12	0	11	11	0	20	20	0
	HARDNESS	12	12	0	11	11	0	20	20	0
	IONCAL	12	6	0	12	6	0	20	10	0
	LANGELIERS INDEX	12	12	0	10	10	0	20	20	0
	MAGNESIUM	12	12	0	11	11	0	20	20	0
	SODIUM	12	12	0	11	11	0	20	20	0
	AMMONIUM TOTAL	12	9	3	11	9	2	20	15	5
	NITRITE	12	9	3	11	3	8	20	8	12
	TOTAL NITRATES	12	12	0	11	11	0	20	20	0
	NITROGEN TOT KJELD	12	12	0	11	11	0	20	20	0
	PH	12	12	0	11	11	0	20	20	0
	PHOSPHORUS FIL REACT	12	6	6	11	1	10			
	PHOSPHORUS TOTAL	12	8	4	11	2	8			
	SULPHATE	6	6	0	5	5	0	10	10	0
	TURBIDITY	12	12	0	11	8	3	20	20	0
*TOTAL SCAN CHEMISTRY	(LAB)	245	202	26	225	165	41	360	303	37
METALS	SILVER	12	0	4		0	6	20	0	16

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

			RAW		TI	REATED		9	SITE 1	
SCAN	PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
CHLOROAROMATICS	HEXACHLOROBUTADIENE	12	0	0	11	0	0	10	0	0
	123 TRICHLOROBENZENE	12	0	0	11	0	0	10	0	0
	1234 T-CHLOROBENZENE	12	0	0	11	0	0	10	0	0
	1235 T-CHLOROBENZENE	12	0	0	11	0	0	10	0	0
	124 TRICHLOROBENZENE	12	0	0	11	0	0	10	0	0
	1245 T-CHLOROBENZENE	12	0	0	11	0	0	10	0	0
	135 TRICHLOROBENZENE	12	0	0	11	0	0	10	0	0
	НСВ	12	0	0	11	0	0	10	0	0
	HEXACHLOROETHANE	12	0	0	11	0	0	10	0	0
	OCTACHLOROSTYRENE	12	0	0	11	0	0	10	0	0
	PENTACHLOROBENZENE	12	0	0	11	0	0	10	0	0
	236 TRICHLOROTOLUENE	12	0	0	11	0	0	10	0	0
	245 TRICHLOROTOLUENE	12	0	0	11	0	0	10	0	0
	26A TRICHLOROTOLUENE	12	0	0	11	0	0	10	0	0
*TOTAL SCAN CHLOROAR	OMATICS	168	0	0	154	0	0	140	0	0
	27/ 701000 00000000		••••••					•		
CHLOROPHENOLS	234 TRICHLOROPHENOL	2	0	U	2	0	0	•	•	•
	2345 T-CHLOROPHENOL	2	0	0	2	U	0	•	•	•
	2356 T-CHLOROPHENOL	2	0	0	2	0	0	•	•	•
	245-TRICHLOROPHENOL	2	0	0	2	U	U	•	•	-
	246-TRICHLOROPHENOL	2	0	0	2	0	0	-	•	•
	PENTACHLOROPHENOL	2	0	0	2	U	0	•	•	•
*TOTAL SCAN CHLOROPH	ENOLS	12	0	0	12	0	0	0	0	0

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

			RAW		T	REATED		5	SITE 1		
SCAN	PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	
PESTICIDES & PCB	BETA BHC	12	0	0	11	0	0	10	0	0	
	LINDANE	12	0	3	11	0	4	10	0	4	
	ALPHA CHLORDANE	12	0	0	11	0	0	10	0	0	
	GAMMA CHLORDANE	12	0	0	11	0	0	10	0	0	
	DIELDRIN	12	0	0	11	0	0	10	0	0	
	METHOXYCHLOR	12	0	0	11	0	0	10	0	0	
	ENDOSULFAN 1	12	0	0	11	0	0	10	0	0	
	ENDOSULFAN II	12	0	0	11	0	0	10	0	0	
	ENDRIN	12	0	0	11	0	0	10	0	0	
	ENDOSULFAN SULPHATE	12	0	0	11	0	0	10	0	0	
	HEPTACHLOR EPOXIDE	12	0	0	11	0	0	10	0	0	
	HEPTACHLOR	12	0	0	11	0	0	10	0	0	
	MIREX	12	0	0	11	0	0	10	0	0	
	OXYCHLORDANE	12	0	0	11	0	0	10	0	0	
	OPDDT	12	0	0	11	0	0	10	0	0	
	PCB	12	0	0	11	0	0	10	0	0	
	DDD	12	0	0	11	0	0	10	0	0	
	PPDDE	12	0	0	11	0	0	10	0	0	
	PPDDT	12	0	0	11	0	0	10	0	0	
	AMETRINE	12	0	0	11	0	0	10	0	0	
	ATRAZINE	12	0	0	11	0	0	10	0	0	
	ATRATONE	12	0	0	11	0	0	10	0	0	
	CYANAZINE	12	0	0	11	0	0	10	0	0	
	DES ETHYL ATRAZINE	6	0	0	5	0	0	5	0	0	
	DES ETHYL SIMAZINE	6	0	0	5	0	0	5	0	0	

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

		RAW			TREATED			SITE 1		
SCAN	PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
SPECIFIC PESTICIDES	DICHLOROVOS	2	0	0	2	0	0			•
	CHLORPYRIFOS	2	0	0	2	0	0	•		
	ETHION	2	0	0	2	0	0			
	AZINPHOS-METHYL	0	0	0	0	0	0	-		
	MALATHION	2	0	0	2	0	. 0			-
	MEVINPHOS	2	0	0	2	0	0	-		•
	METHYL PARATHION	2	0	0	2	0	0	-		
	METHYLTRITHION	2	0	0	2	0	0			
	PARATHION	2	0	0	2	0	0			
	PHORATE	2	0	0	2	0	0			
	RELDAN	2	0	0	2	0	0			
	RONNEL	2	0	0	2	0	0	•		
	AMINOCARB	0	0	0	0	0	0			
	BENONYL	2	0	0	2	0	0	•		•
	BUX	2	0	0	2	0	0	-		•
	CARBOFURAN	2	0	0	2	0	0			
	CICP	2	0	0	2	0	0			
	DIALLATE	2	0	0	2	0	0			
	EPTAM	2	0	0	2	0	0			
	IPC	2	0	0	2	0	0			
	PROPOXUR	2	0	0	2	0	0	•		
	CARBARYL	2	0	0	2	0	0			
	BUTYLATE	2	0	0	2	0	0	•	•	•
*TOTAL SCAN SPECIFIC	PESTICIDES	56	0	0	56	0	0	0	0	0

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

			RAW		T	REATED		s	SITE 1	
SCAN	PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
VOLATILES	1,3 DICHLOROBENZENE	10	0	0	10	0	0	9	0	0
	1,2 DICHLOROBENZENE	10	0	0	10	0	0	9	0	0
	TRIFLUOROCHLOROTOLUE	4	0	0	5	0	0	4	0	0
	ETHLYENE DIBROMIDE	10	0	0	10	0	0	9	0	0
	TOTL TRIHALOMETHANES	10	0	0	10	10	0	9	9	0
*TOTAL SCAN VOLATILES		287	0	11	286	41	32	258	38	15
*TOTAL GROUP ORGANIC		1135	5	29	1068	42	54	728	38	27
TOTAL		1748	443	145	1671	414	190	1696	705	226

KEY TO TABLE 5 and 6

	A	ONTARIO DRINKING WATER OBJECTIVES (ODWO) 1. Maximum Acceptable Concentration (MAC) 1+. MAC for Total Trihalomethanes
		<pre>1*. MAC for Bacteriological Analyses Poor water quality is indicated when : - total coliform counts > 0 < 5 - P/A Bottle Test is present after 48 hours</pre>
on contraint 1919 - 1923 1918 - 1924		 Aeromonas organisms are detected in more than 25% of samples in a single submission or in successive submissions from the same sampling site
		 Pseudomonas Aeruginosa, Staphylococcus Aureus and members of the Fecal Streptococcus group should not be detected in any sample Standard Plate Count should not exceed 500
		organisms per ml at 35 °C within 48 hours 2. Interim Maximum Acceptable Concentration (IMAC) 3. Maximum Desirable Concentration (MDC)
		4. Aesthetic or Recommended Operational Guideline - hardness levels between 80 and 100 mg/L as calcium carbonate are considered to provide an acceptable balance between corrosion and incrustation, water supplies with a hardness >200 mg/L are considered poor and those in
	в	HEALTH & WELFARE CANADA (H&W)
	-	1. Maximum Acceptable Concentration (MAC) 2. Proposed MAC
		 Interim MAC Aesthetic Objective (AO) (for xylenes, the AO is a total)
	С	WORLD HEALTH ORGANIZATION (WHO) 1. Guideline Value (GV) 2. Tentative GV 3. Aesthetic GV
	D	US ENVIRONMENTAL PROTECTION AGENCY (EPA) 1. Maximum Contaminant Level (MCL) 2. Suggested No-Adverse Effect Level (SNAEL) 3. Lifetime Health Advisory 4. EPA Ambient Water Quality Criteria
	F	EUROPEAN ECONOMIC COMMUNITY (EEC) 1. Health Related Guideline Level 2. Aesthetic Guideline Level 3. Maximum Admissable Concentration (MADC)
	G	CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
	н	USSR MAXIMUM PERMISSIBLE CONCENTRATION
	I	NEW YORK STATE AMBIENT WATER GUIDELINE
	N/A	NONE AVAILABLE

The interpretation of analytical results that are obtained from measurements near the limit of detection of the measurement process is subject to greater uncertainty than those at higher concentrations. The principle areas of concern relate to whether the substance has actually been detected, whether it has been properly identified, and whether it is an artifact of the measurement process. In other words, false positives can be caused by the instrumentation or the test procedures used, when in fact these compounds are not present in the sample.

There are several methods to treat data from such measurements: 1. Exclude the low-level data because of this uncertainty factor. However, studies of long-term environmental trends and modelling may be adversely affected by exclusion of such data. 2. Qualify these data so the user is aware of the greater uncertainty associated with their use.

For the Drinking Water Surveillance Program, measurements near the limit of detection of the measurement process are reported qualified by the code "<T". Results quantified by "W" indicate a zero measurement. These results are reported for purposes of modelling and long-term trend analysis and no significance should be attributed to a single determination of a substance below "T" (a single determination may well be a false positive). Repeat analysis or additional data are needed before it can be stated with certainty that the substance in question was truly present. On the other hand, it is less likely that repeated detection of a substance at or near the limit of detection at a specific location is solely due to an artifact in the measurement system, and more likely represents a true positive. However the average of such data is still only an estimate of the amount of substance present subject to the possible biases of the method used.

LABORATORY RESULTS, REMARK DESCRIPTIONS

No	Sample	Taken
----	--------	-------

- BDL Below Minimum Measurable Amount
- <T Greater Than Detection Limit But Not Confident
 (SEE INTERPRETATION OF RESULTS ABOVE)</pre>
- > Results Are Greater Than The Upper Limit
- <=> Approximate Result
- !AW No Data: Analysis Withdrawn
- !CR No Data: Could Not Confirm By Reanalysis
- !CS No Data: Contamination Suspected
- !IL No Data: Sample Incorrectly Labelled
- !IS No Data: Insufficient Sample
- !LA No Data: Laboratory Accident

	TABLE 5								
	DRINKIN	G WATER SURV	EILLANCE PROGRAM M	EIRO TURUNTO (R. L. CLARK WIP) 198					
	WATER TREA	TMENT PLANT		DISTRIBUTION SYSTEM					
	RAW	TREATED	SITE 1						
			STANDING	FREE FLOW					
BAC	TERIOLOGICAL								
AEROMONAS SP (0=ABSEN	IT)		DET'N LIMIT = N/A	GUIDELINE = 0 (A1)					
				0					
APR	•	•	•	8					
AUG	•	•							
E COLL P/A (O=ABSENT	·		DET'N LIMIT = N/A	GUIDELINE = N/A					
_,, ,,,, (o ,,bock)									
APR				0					
AUG	•			0					
FECAL COLIFORM MF (CI	/100ML)		DET'N LIMIT = 0	GUIDELINE = 0 (A1)					
JAN	4	•	•	•					
FEB	11	•	٠	•					
MAR	1	•	•						
APR	3	•	•	•					
MAY	0	•	•	•					
JUN	1	-	•	•					
JUL	14	•	•	•					
AUG	о Эт/я	•	•	•					
	2 140 7 T/8		•	•					
NOV	12 124	•	•	•					
DEC	2 124	•	•	·					
				•					
FECAL COLIFORM (0=ABS	SENT)		DET'N LIMIT = N/A	GUIDELINE = 0 (A1)					
APR	•			0					
AUG		U		0					
STRADED FEATE CAT HI									
JAN	29	0	•	3					
FEB	101	0	•	2					
MAR	112	9	•	14					
APR	380	0	•	2					
T AT	210	0	•	•					
JUN	83 2400 5	0	•	2					
AUC	2400 >	18	•	15					
SEP	20	1	•	(
	•		\ # 7 •	24 124 2>					
	•	N D D	•	2 <=>					
- NUV									

it

			TABLE 5	TABLE 5			
	DRINKING	G WATER SURVEILL	ANCE PROGRAM	HETRO TORONTO (R. L. CL	ARK WTP) 1988		
	WATER TREAT	MENT PLANT		DISTRIBUT	ION SYSTEM		
	RAW	TREATED	SITE 1				
			STANDING	FREE FLOW			

SEP	830 A3C	1 T48	•	0 T24			
	2400 > 580 A3C	2400 > 0 T24	•	0 124			
DEC	42 T24	0 T24	•				
			-				
					1		

			TABLE 5				
	DRINKI	NG WATER SURVE	EILLANCE PROGRAM ME	TRO TORONTO (R. L. CLARK WTP) 198			
	WATER TRE	ATMENT PLANT		DISTRIBUTION SYSTEM			
	RAW	TREATED	SITE 1	· · · · · · · · · · · · · · · · · · ·			
			STANDING	FREE FLOW			
FLD PH (DMSNLESS)			DET'N LIMIT = N/A	GUIDELINE = 6.5-8.5(A4			
	8,200	7,400	7,690	7.600			
SAN CED	8 300	7,200	7,600	7 500			
red War	8 400	7 400	7.500	7 500			
MAR ADD	8 200	7 600	7.200	1.500			
APK MAV	8 300	7.500	•				
	8 200	7 400	7 480	• 7 280			
10	8 400	7 500	7,620	7 390			
JUL	8 100	7.500	7.020	7.590			
AUG 650	8 100	7 300	7,700	7.520			
SEP	8 200	7.500	7.630	7.520			
	8.200	7.400	7.000	7.330			
DEC	8.200	7.400		7.450			
FLD TEMPERATURE (DEG	.c)		DET'N LIMIT = N/A	GUIDELINE = 15 (A1)			
IAN	3.000	4.000	14,000	7 000			
FEB	2,000	2,500	,				
MAR	2.000	3,500	12,000	5.000			
APR	5.000	5.000	12.000	5.000			
MAY	7 300	7.500	•	•			
JUN	7.300	7.000	16.000	• 10_000			
	10,000	10,000	18,000	12,000			
ALIC	11 000	12 000	10.000	14.000			
SED	8 000	8 000	20 100	14.000			
007	0.000	0.000	16 000	12,000			
NOV	6 000	£ 000	16.000	9 000			
DEC	4.000	6.000					
FLD TURBIDITY (FTU)		DET'N LIMIT = N/A	GUIDELINE = 1.0 (A1)			
JAN	900	090	260	100			
FEB	2.000	. 120	.140	. 140			
MAR	3,000	. 170	250	. 190			
APR	.800	180					
MAY	1,100	. 180	•	•			
JUN	1,100	. 120	260	. 170			
JUL	700	150	200	240			
AUG	004	120	220	270			
SED	.000	. 120	.200	.270			
	.000	. 120		. 100			
NOV	.700	. 100	. 190	.200			
NUV	.900	.100	. 120	.110			
DEC	.600	.070	•	•			

			TABLE 5	
	DRINKIN	G WATER SURVEI	LLANCE PROGRAM M	NETRO TORONTO (R. L. CLARK WTP) 15
	WATER TREA	TMENT PLANT		DISTRIBUTION SYSTEM
	RAW	TREATED	SITE 1	
			STANDING	FREE FLOW
COLOUR (TCU)		с	DET'N LIMIT = .5	GUIDELINE = 5.0 (A3)
JAN	1.000 <t< td=""><td>BDL</td><td>1.500 <1</td><td>r 1.000 <r< td=""></r<></td></t<>	BDL	1.500 <1	r 1.000 <r< td=""></r<>
FEB	2.000 <t< td=""><td>1.000 <1</td><td>r 1.500 <1</td><td>r 1.000 <r< td=""></r<></td></t<>	1.000 <1	r 1.500 <1	r 1.000 <r< td=""></r<>
MAR	3.000	.500 <1	r 1.000 <1	r 1.000 <r< td=""></r<>
APR	2.000 <t< td=""><td>1.000 <1</td><td>r 1.500 <1</td><td>T 1.000 <t< td=""></t<></td></t<>	1.000 <1	r 1.500 <1	T 1.000 <t< td=""></t<>
MAY	2.000 <t< td=""><td>.500 <1</td><td>r.</td><td></td></t<>	.500 <1	r.	
JUN	2.000 <t< td=""><td>.500 <1</td><td>r 1.000 <1</td><td>r .500 < r</td></t<>	.500 <1	r 1.000 <1	r .500 < r
JUL	2.500	.500 <1	r 1.000 <1	t 1.000 <t< td=""></t<>
AUG	1.500 <t< td=""><td>.500 <1</td><td>r 1.000 <1</td><td>T 1.000 <t< td=""></t<></td></t<>	.500 <1	r 1.000 <1	T 1.000 <t< td=""></t<>
SEP	1.500 <t< td=""><td>.500 <1</td><td>r 1.500 <1</td><td>T 1.000 <t< td=""></t<></td></t<>	.500 <1	r 1.500 <1	T 1.000 <t< td=""></t<>
OCT	2.000 <t< td=""><td>NSS</td><td>1.500 <1</td><td>T 1.500 <t< td=""></t<></td></t<>	NSS	1.500 <1	T 1.500 <t< td=""></t<>
NOV	1.500 <t< td=""><td>.500 <1</td><td>r .500 <1</td><td>T 1.000 <t< td=""></t<></td></t<>	.500 <1	r .500 <1	T 1.000 <t< td=""></t<>
DEC	1.500 <t< td=""><td>.500 <1</td><td>r.</td><td>•</td></t<>	.500 <1	r.	•
CONDUCTIVITY (UMHO/CM	1)	[DET'N LIMIT = 1	GUIDELINE = 400 (F2)
JAN	327	337	337	339
FEB	336	356	347	345
MAR	341	345	342	339
APR	335	345	344	351
MAY	339	349	•	•
JUN	336	343	341	339
JUL	331	338	337	335
AUG	328	330	334	332
SEP	329	333	331	330
OCT	326	NSS	331	330
NOV	331	336	337	338
DEC	326	331	•	•
FLUORIDE (MG/L)		t	DET'N LIMIT = .01	GUIDELINE = 2.400 (A
JAN	.100	1.260	1.220	1.180
FEB	. 140	1.120	1.160	1.100
MAR	.130	1.140	1.120	1.120
APR	.120	1.300	1.260	1.240
MAY	.130	1.330		•
JUN	. 130	1.230	1.240	1.240
JUL	.130	1.080	1.140	1.130
AUG	.130	1.080	1.100	1.140
SEP	.140	1.140	1.100	1.040
OCT	. 120	NSS	1.100	1.080
NOV	.120	1.140	1.140	1.100
DEC	.120	1.080		
HARDNESS (MG/L)		(DET'N LIMIT = .500	0 GUIDELINE = 80-100 (

			TABLE 5		
	DRINKI	IG WATER SURVEI	LLANCE PROGRAM ME	TRO TORONTO (R. L. C	LARK WTP) 1
	WATER TREA	ATMENT PLANT		DISTRIBU	JTION SYSTEM
		TREATED	SITE 1		
		I NEAT 60	STANDING	FREE FLOW	
FER	S. (¹) 8,400	8.200	8.300	8.200	
MAR	8,600	8,500	8,600	8.600	
APR	8,500	8.500	8.300	7.900	
MAY	8,200	8,200			
(1)) (1))	8-000	8,100	8,100	8.100	
.101	8.100	8.400	8.500	8.100	
ALIG	8.500	8.700	8.600	8.600	
SEP	8.600	8,500	8.800	8.400	
	8.300	NSS	7,900	8.200	
NOV	8.800	8.800	8.700	8,700	
DEC	8,800	8,600		•	
DDIUM (MG/L)	C	DET'N LIMIT = .200	GUIDELIN	E = 200 (C3
JAN	12.600	12.800	12.600	13.000	
FEB	13.400	15.200	13.600	14.000	
MAR	14.800	14.400	13.800	13.600	
APR	13.200	13.200	13.600	14.400	
MAY	13.400	13.200	8	•	
JUN	11.600	11.600	11.600	11.400	
JUL	12.000	12.000	12.200	12.200	
AUG	12.000	11.800	12.000	12.200	
SEP	12.200	12.200	12.200	12.000	
OCT	12.400	NSS	12.000	12.200	
NOV	12.400	11.800	11.800	11.200	
DEC	12.000	12.000			
MMONIUM TOTAL (MG/L)		DET'N LIMIT ≈ 0.000	2 GUIDELIN	E = .05 (F2
JAN	.008 <t< td=""><td>.010</td><td>.012</td><td>.004 <1</td><td></td></t<>	.010	.012	.004 <1	
FEB	-054	.008 <	r _008 <t< td=""><td>.008 <t< td=""><td></td></t<></td></t<>	.008 <t< td=""><td></td></t<>	
MAR	.054	.118	. 120	. 126	
APR	.044	.112	_084	.094	
MAY	.032	.076	-		
JUN	.052	.012	014	.010	
JUL	.068	.088	.098	.098	
AUG	.028	.080	.114	.118	
SEP	.014	.084	.036	.014	
ост	.010	NSS	.118	. 108	
NOV	_006 <t< td=""><td>-008 <'</td><td>T .008 <t< td=""><td>.006 <1</td><td></td></t<></td></t<>	-008 <'	T .008 <t< td=""><td>.006 <1</td><td></td></t<>	.006 <1	
DEC	.008 <1	. 126			
ITRITE (MG/L)		DET'N LIMIT = 0.00	1 GUIDELIN	E = 1.000 (
					•
JAN	.002 <t< td=""><td>.001 <</td><td>T</td><td>.001 <t< td=""><td></td></t<></td></t<>	.001 <	T	.001 <t< td=""><td></td></t<>	
				· · · ·	

					<u></u>	
	WATER	TREA	TMENT PLANT			DISTRIBUTION SYSTEM
	RAW		TREATED		SITE 1	
					STANDING	FREE FLOW
FEB	8.130		7.830		7.950	7.920
MAR	8.270		8.110		8.170	8.040
APR	8.360		8.280		8,280	8.260
MAY	8.210		8.020		•	•
JUN	8.330		8.060		8,280	8.230
JUL	8.260		7.950		8.100	8.060
AUG	8.030		7.690		7.970	7.890
SEP	8.160		7.990		8.170	8.120
OCT	8.270		NSS		8.230	8.230
NOV	8.210		7.900		8.030	7.940
DEC	8.330		8.210		•	•
·····	················					
HOSPHORUS FIL	REACT (MG/L)		DELIN	LIMII = .0003	GUIDELINE = N/A
JAN	.004		.002	<ī	•	•
FEB	.005		.001	۲>	•	•
MAR	.002		.002	<ĩ	•	•
APR	.003		.001	٦>	•	•
MAY	.001	<t< td=""><td>.001</td><td><1</td><td>•</td><td>•</td></t<>	.001	<1	•	•
JUN	.003		.001	۲>	•	•
JUL	.001	٦>	.001	<1	•	•
AUG	.000	<t< td=""><td>.001</td><td><ï</td><td>•</td><td>•</td></t<>	.001	<ï	•	•
SEP	.001	<ĭ	.001	۲>	•	•
OCT	.000	<t< td=""><td>NSS</td><td></td><td>•</td><td>•</td></t<>	NSS		•	•
NOV	.005		.005		•	•
DEC	.001	<1	.001	<1	•	•
HOSPHORUS TOT	AL (MG/L)			DET/N	LIIMIT = .002	GUIDELINE = .40 (E2)
				021		
JAN	.011		.003			•
FEB	.017		.008	<ĭ	•	
MAR	.016		.006	<ī	•	•
APR	.011		.003	۲>	•	
MAY	.012		.007	<ī		
JUN	.015		.002	۲>		
JUL	.018		.004	<ī	•	
AUG	.031	,	.028			
SEP	.004	<t< td=""><td>BDL</td><td></td><td></td><td></td></t<>	BDL			
OCT	.008	<ī	NSS			
NOV	.009	<1	.005	<ī	•	
DEC	.009	۲>	.002	<t< td=""><td></td><td></td></t<>		
JEPHATE (MG/L)			DETIN	I LIMIT = .200	GUIDELINE = $500.$ (A

	RAW	TREATED		SITE 1		
				STANDING	FREE FLOW	
	METAIS					
SILVER (UG/L)		DET'	N LIMIT = .0	20 GU	IDELINE = 50. (A1)
JAN	.030	<t .020<="" td=""><td> <ĭ</td><td>.030</td><td><1 .020</td><td><ī</td></t>	<ĭ	.030	<1 .020	<ī
FEB	.050	<ī .040) <ī	. 160	<ĩ .050	<ī
MAR	BDL	.100) <⊺	.100	<ĭ .030	<ĭ
APR	BDL	BDL		.130	<t .040<="" td=""><td><ï</td></t>	< ï
MAY	BDL	BDL.	•	v	•	
JUN	BDL	BDL	•	.060	<t bol<="" td=""><td></td></t>	
JUL	.030	<t a="" bdl<="" td=""><td>-</td><td>.500</td><td><t .140<="" td=""><td><ĩ</td></t></td></t>	-	.500	<t .140<="" td=""><td><ĩ</td></t>	<ĩ
AUG	BDL	BDL.	-	.030	<t bdl<="" td=""><td></td></t>	
SEP	BDL	.040) <ï	.040	<t bol<="" td=""><td></td></t>	
OCT	BDL	NSS	5	.040	<t bdl<="" td=""><td></td></t>	
NOV	.030	<ī .060) <ĭ	.140	<ī .150	<ï
DEC	BDL.	.040) <ï	•		

ALUMINUM (UG/L			DET'	N LIMIT = .()50 GU	IDELINE = 100.(A4)
JAN	17.400	62.64()	55.680	51.040)
FEB	35.960	58.000)	49.880	55.680	I
MAR	42.920	70.760	D	58.000	54.520	J
APR	16.240	127.600	D	111.360	116.000	J
MAY	22.040	114.840	0	8		
JUN	24.360	58.000	0	70.760	54.520	J
JUL	11.484	90.480	0	84.680	104.400)
AUG	5,916	81.200	0	71.920	70.760)
SEP	6.496	83.52	0	77.720	82.360)
OCT	15.080	NS!	S	78.880	75.400)
NOV	30,160	75.40(0	64.960	66.120)
DEC	15.080	60.320	0			
			-			
ARSENIC (UG/L)		DET	'N LIMIT = O	.050 GU	IIDELINE = 50.0 (A
JAN	.870	<ī .92(0 <ī	.930	<ī .840) <ī
FEB	.730	<t .82(<="" td=""><td>0 <t< td=""><td>.710</td><td><t .810<="" td=""><td>J <ĩ</td></t></td></t<></td></t>	0 <t< td=""><td>.710</td><td><t .810<="" td=""><td>J <ĩ</td></t></td></t<>	.710	<t .810<="" td=""><td>J <ĩ</td></t>	J <ĩ
MAR	.620	<ĩ .450	⊺> 0	.240	<7 .140) <ī
APR	.920	<t .88<="" td=""><td>0 <t< td=""><td>1.100</td><td>.840</td><td>) <ī</td></t<></td></t>	0 <t< td=""><td>1.100</td><td>.840</td><td>) <ī</td></t<>	1.100	.840) <ī
MAY	1.100	1.10	0			
JUN	.560	<t .520<="" td=""><td>0 <ĭ</td><td>.360</td><td><1 .320</td><td>) <ī</td></t>	0 <ĭ	.360	<1 .320) <ī
JUL	.980	<t _791<="" td=""><td>ĭ> 0</td><td>.800</td><td><1 .900</td><td>) <t< td=""></t<></td></t>	ĭ> 0	.800	<1 .900) <t< td=""></t<>
	1 100	1_20/	0	.840	<1 _900) <t< td=""></t<>
AUG	1.100		-			•
AUG SEP	1,200	1.300	0	1_400	1_200	1
AUG SEP OCT	1.200	1.30	0 s	1.400	1.200)) <ï
AUG SEP OCT NOV	1.100 1.200 1.100 1.100	1.301 NSS	0 S Ω <τ	1.400 .980 .760	1.200 <t 1.000<br=""><t 030<="" td=""><td>)) <ĭ <ī</td></t></t>)) <ĭ <ī

BARIUM (UG/L)

.....

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1988

DISTRIBUTION SYSTEM

WATER TREATMENT PLANT

	RAW		TREATED		SITE 1					
					STANDING		FREE FLOW			
FFB	BDL		8DL		.110	₹	.090	<ī		
MAR	BDL		.050	۲>	.130	<1	BDL			
APR	BDL		BDL		BDL		BDL			
MAY	BDL		BOL				•			
JUN	.060	۲>	BDL.		BDL		BDL			
JUL	BDL		BDL		BDL		BDL			
AUG	BDL		BDL		BDL		BDL			
SEP	BDL		BDL		BDL		BDL			
OCT	BDL		NSS		.070	۲>	BDL			
NOV	.060	<t< td=""><td>BDL</td><td></td><td>BDL</td><td></td><td>BDL</td><td></td><td></td><td></td></t<>	BDL		BDL		BDL			
DEC	BDL		BOL		•		•			
COBALT (UG/L)			DET	'N LIMIT = 0.	.020	GUI	DELINE	= 1000) (H)
1411	770	~1	370	<ī	320	<⊺	200	« ۱		
JAN	.330	~7	.370	>1 ∢7	.320	~7	.290	<1		
FEB	- 100	~7	. 110	~7	.070	×1 ∠T	.070	~1 ~1		
MAR	-210 000	~7	. 130	~1	. 100	~7	. 170	<1 <⊺		
APR	.090	~7	100	>1 ∡T	.110	~	.000	~1		
	- 120	~7	040	~7	040	~7	050	<1		
JUN	.100 140	~T	180	~T	.040	<ï	220	<"		
AUC	. 100	>1 ∠1	. 160	۲۲ ۲۲	100	יי ∡ד	.220	<1 <1		
SED	.070	~T	150	۲. ۲۵	240	<1	170	<1 <1		
OCT	.120	>1 ∠T	0C1. 2214	~1	.240	<1	180	יי ۲>		
NOV	.100	<t< td=""><td>050</td><td><7</td><td>. 150</td><td><ĭ</td><td>030</td><td><ï</td><td></td><td></td></t<>	050	<7	. 150	<ĭ	030	<ï		
DEC	.100	<ī	.090	<ī	.030					
CHROMIUM (UG/L)			DEI	T'N LIMIT = O	.100	GUI	DELINE	= 50.	(A1)
JAN	50 ST	₹7	. 590	۲	.510	<ī	. 440	< ï		
FEB	.740	<ï	.670	<ĩ	.590	<⊺	.610	<ī		
MAR		<ī	.550	۲	.750	<t< td=""><td>.520</td><td><1</td><td></td><td></td></t<>	.520	<1		
APR	.900	<ī	.790	<ī	.520	<ī	.530	<ī		1
MAY	1.700		3.500							
JUN	1,600		4.100		.910	₹7	.800	<ï		
JUL	.400	<ī	.390	<ī	.400	<ī	.490	<1		
AUG	3.500		3,600	•	2.000	·	3.300			
SEP	4.700		1.100		3.900		3.900			
OCT	6.000		NSS		5.100		5.800			
NOV	7.000		1.100		4.900		15.000			
DEC	4.900		1.100		•					
COPPER (UG/L	, Service			DEI	r'n limit = .	100	GUI	DELINE	= 100	0 (A3)
JAN	11 000		7 100		۵۵۸ <u>۸</u>		/ 500			
FEB	0.000		3.100		0.400		4.500			
	7.200		3.700		40.000		0.200			

T	A	8	L	E	-5
---	---	---	---	---	----

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1988

DISTRIBUTION SYSTEM

WATER TREATMENT PLANT

	RAU	TREATED	SITE 1		
			STANDING	FREE FLOW	
					•
APR	2.500	.890	4.100	2.900	
MAY	2.900	.760	•	4	
JUN	3.700	.420 <ĭ	1.400	.960	
JUL	2.700	,290 <t< td=""><td>1.300</td><td>.750</td><td></td></t<>	1.300	.750	
AUG	1.300	.420 <t< td=""><td>1.600</td><td>1.600</td><td></td></t<>	1.600	1.600	
SEP	1.800	.530	1.900	1.600	
OCT	2.000	NSS	1.800	2.000	
NOV	3.100	.410 <t< td=""><td>.710</td><td>.800</td><td></td></t<>	.710	.800	
DEC	2.500	.240 <t< td=""><td></td><td>•</td><td></td></t<>		•	
MOLYBDENUM (UG/L)	DE	T'N LIMIT = 0.020	GUIDELII	₩E = 500 (H)
JAN	1.100	1.100	1,200	1.200	
FEB	1.200	1.200	1.300	1.200	
MAR	1.200	1.300	1.200	1.200	
APR	1.200	1.100	1.300	1.200	
MAY	1.300	1,300	2	٩	
JUN	1.300	1.300	1.300	1.300	
JUL	1.300	1.300	1.200	1.300	
AUG	1.200	1.200	1.100	1.100	
SEP	1.100	1.200	1.300	1.300	
OCT	1.200	NSS	1.200	1.300	
NOV	1.300	1.300	1.300	1.200	
DEC	1.100	1.200	•	•	
NICKEL (UG/L)		DE	T'N LIMIT = 0.100	GUIDELI	NE = 50. (F3)
JAN	3.900	4.400	4.400	4.300	
FEB	.920 <ī	.720 <ī	1.900	1.000 <t< td=""><td></td></t<>	
MAR	2.700	1.300 <t< td=""><td>2.000</td><td>1.400</td><td></td></t<>	2.000	1.400	
APR	1.500	1.400 <ī	2.400	1.500	
MAY	.880 <t< td=""><td>.640 <t< td=""><td>•</td><td>•</td><td></td></t<></td></t<>	.640 <t< td=""><td>•</td><td>•</td><td></td></t<>	•	•	
JUN	.290 <ĭ	.200 <t< td=""><td>.540 <ĭ</td><td>BDL</td><td></td></t<>	.540 <ĭ	BDL	
JUL	.280 <t< td=""><td>.470 <ĭ</td><td>2.400</td><td>.630 <t< td=""><td></td></t<></td></t<>	.470 <ĭ	2.400	.630 <t< td=""><td></td></t<>	
AUG	BDL	.1 3 0 <ī	1.500 <t< td=""><td>BDL</td><td></td></t<>	BDL	
SEP	1.300 <ĭ	1.200 <ī	4.200	1.300 <t< td=""><td></td></t<>	
OCT	1.100 <t< td=""><td>NSS</td><td>1.200 <t< td=""><td>1.200 <ĭ</td><td></td></t<></td></t<>	NSS	1.200 <t< td=""><td>1.200 <ĭ</td><td></td></t<>	1.200 <ĭ	
NOV	.350 <t< td=""><td>.710 <ĭ</td><td>1.300 <t< td=""><td>.120 <t< td=""><td></td></t<></td></t<></td></t<>	.710 <ĭ	1.300 <t< td=""><td>.120 <t< td=""><td></td></t<></td></t<>	.120 <t< td=""><td></td></t<>	
DEC	1.400 <t< td=""><td>1.400 <t< td=""><td>•</td><td>•</td><td></td></t<></td></t<>	1.400 <t< td=""><td>•</td><td>•</td><td></td></t<>	•	•	
LEAD (UG/L)		DE	T'N LIMIT = 0.050	GUIDELI	NE = 50. (A1)
JAN	.190 <ī	.090 <ī	.900	.170 <ĭ	
FEB	.420	.100 <t< td=""><td>.890</td><td>.190 <t< td=""><td></td></t<></td></t<>	.890	.190 <t< td=""><td></td></t<>	
MAR	.390	.110 <t< td=""><td>1.200</td><td>.170 <t< td=""><td></td></t<></td></t<>	1.200	.170 <t< td=""><td></td></t<>	
APR	.150 <t< td=""><td>.030 <ī</td><td>1.000</td><td>.160 <ĭ</td><td></td></t<>	.030 <ī	1.000	.160 <ĭ	

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1988

DISTRIBUTION SYSTEM

WATER TREATMENT PLANT

	RAW	TREATED	SITE 1		
			STANDING	FREE FLOW	
JUN	200.000	190.000	190.000	200.000	
JUL	170.000	170.000	170.000	180.000	
AUG	160.000	160.000	170.000	160.000	
SEP	190.000	190.000	190.000	190.000	
OCT	180.000	NSS	170.000	190.000	
NOV	180.000	180.000	180.000	180.000	
DEC	170.000	170.000	•	•	

TITANIUM (UG/L)	DE	T'N LIMIT = .050	GUIDELIN	E = N/A
JAN	3.400	3.700	3.300	3.000	
FEB	6.100	5.700	5.000	5.200	
MAR	3,500	4.100	3.600	3.500	
APR	3.300	3.400	2.400	2.700	
MAY	4.700	4.100	•		
JUN	4.500	4.700	4.300	4.300	
JUL	1.500 <t< td=""><td>1.500 <t< td=""><td>1.500 <t< td=""><td>1.800 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	1.500 <t< td=""><td>1.500 <t< td=""><td>1.800 <t< td=""><td></td></t<></td></t<></td></t<>	1.500 <t< td=""><td>1.800 <t< td=""><td></td></t<></td></t<>	1.800 <t< td=""><td></td></t<>	
AUG	3,200	3.100	3.500	3.500	
SEP	5.100	5.300	5.200	5.200	
OCT	3.800	NSS	3.300	3.100	
NOV	5.700	4.700	4.900	4.700	
DEC	3.800	3.300	•	٠	
THALLIUM (UG/L)	DE	ET'N LIMIT = .010	GUIDELIN	E = 13. (D4)
JAN	.030 <ĭ	.020 <t< td=""><td>.010 <t< td=""><td>.010 <t< td=""><td></td></t<></td></t<></td></t<>	.010 <t< td=""><td>.010 <t< td=""><td></td></t<></td></t<>	.010 <t< td=""><td></td></t<>	
FEB	.030 <1	.010 <t< td=""><td>.020 <t< td=""><td>.020 <t< td=""><td></td></t<></td></t<></td></t<>	.020 <t< td=""><td>.020 <t< td=""><td></td></t<></td></t<>	.020 <t< td=""><td></td></t<>	
MAR	.040 <t< td=""><td>.020 <t< td=""><td>.020 <t< td=""><td>.010 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.020 <t< td=""><td>.020 <t< td=""><td>.010 <t< td=""><td></td></t<></td></t<></td></t<>	.020 <t< td=""><td>.010 <t< td=""><td></td></t<></td></t<>	.010 <t< td=""><td></td></t<>	
APR	BDL	BDL	BDL	.020 <t< td=""><td></td></t<>	
MAY	BDL	BDL	-		
JUN	BDL	BDL	BDL	BDL	
JUL	BDL	BDL.	BDL	BDL	
AUG	BDL	BDL	BDL	BDL	
SEP	BDL	BDL	BDL	BDL	
OCT	BDL	NSS	BDL	BDL	
NOV	BDL	BDL	BDL	BDL	
DEC	BDL	BDL			
	· · · · · · · · · · · · · · · · · · ·		T'N (IMIT = .020	GUIDELIN	F = 20. (A2)
	,		., A EIMIN - ,020	GOIDELIN	6 - 6V. (AG)
JAN	.380	.400	.390	.350	
FEB	.460	.430	.440	.390	
MAR	.400	.370	.360	.340	
APR	.360	.320	.460	.400	
MAY	.350	.380	•		
JUN	.360	.270	.280	.290	

				TABLE	5	
	DRINKI	NG WATER SURV	/EILLANCE	PROGRAM	METRO TORONTO (R. L. CLARK WTP)	1988
	WATER TRE	ATMENT PLANT	<u></u>		DISTRIBUTION SYSTE	EM
	RAU	TREATED		SITE 1		
			S	rand i ng	FREE FLOW	
· · · · · · · · · · · · · · · · · · ·	PESTICIDES & PCB					
ALPHA BHC (NG/L)		DET'N I	.IMIT = 1.	.000 GUIDELINE = 700 (G))
JAN	2,000 <7	3.000	<ī	•	3.000 <t< td=""><td></td></t<>	
FEB	BDL	BDL			BDL	
MAR	2.000 <t< td=""><td>2.000</td><td><ĭ</td><td></td><td>2.000 <t< td=""><td></td></t<></td></t<>	2.000	<ĭ		2.000 <t< td=""><td></td></t<>	
APR	3.000 <ī	3.000	۲)		3,000 <t< td=""><td></td></t<>	
MAY	1.000 <t< td=""><td>2.000</td><td><ĩ</td><td></td><td>•</td><td></td></t<>	2.000	<ĩ		•	
JUN	3.000 <ĩ	3.000	<ī		BDL	
JUL	2.000 <ľ	2.000	<ī		2.000 <ĭ	
AUG	1.000 <ī	2.000	<ī		2.000 <t< td=""><td></td></t<>	
SEP	2.000 <t< td=""><td>3.000</td><td><ĩ</td><td></td><td>2.000 <t< td=""><td></td></t<></td></t<>	3.000	<ĩ		2.000 <t< td=""><td></td></t<>	
TOOT	BDL	NSS			2.000 <t< td=""><td></td></t<>	
NOV	1.000 <ī	2.000	<ĩ		2.000 <t< td=""><td></td></t<>	
DEC	BDL	BDL			•	
	1911 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 	**********				
LINDANE (NG/L)		DET'N I	_IMIT = 1.	.000 GUIDELINE = 4000 (/	A1)
JAN	BOL	BDL			2.000 <1	
FEB	BDL	8DL		в	BDL	
MAR	BDL	1.000	<۲		1.000 <t< td=""><td></td></t<>	
APR	1.000 <t< td=""><td>1.000</td><td><⊺</td><td>•</td><td>1.000 <ī</td><td></td></t<>	1.000	<⊺	•	1.000 <ī	
MAY	BDL	BDL				
JUN	BDL	BDL			BDL	
JUL	BDL	BDL			BDL	
AUG	BDL	BDL			BDL	
SEP	1.000 <t< td=""><td>1.000</td><td><t< td=""><td></td><td>BDL</td><td></td></t<></td></t<>	1.000	<t< td=""><td></td><td>BDL</td><td></td></t<>		BDL	
OCT	BDL	NSS			BDL	
NOV	1.000 <ī	1.000	<۲		1.000 <t< td=""><td></td></t<>	
DEC	BDL	BDL		•	•	

	WATER TREAT	MENT PLANT	IT		DISTRIBUTION SYSTEM	
	RAW	TREATED	s	ITE 1		
			STAND	ING	FREE FLOW	
 V	OLATILES					
ENZENE (UG/L)	847 1		DET'N LIMI	T = .050	GUIDELINE =	5.0 (B1)
	I CM	100	τ		BDI	
JAN	: 3M 8D1	. 100	<t< td=""><td>•</td><td>BDI</td><td></td></t<>	•	BDI	
MAK	BDL	100		•	BDI	
APR	BDL	BDL		•	502	
MAT	BDL	BDL		•	- RDI	
JUN	RUI	RUI		•	BDI	
JUL	BDL	801		•	BDL	
AUG	BDL	BOL		•	BDI	
SEF OCT	801	MSS		•	BDL	
	801	RDI		•	BDL.	
NEC	801	801				
····						
OL UENE (UG/L))		DET'N LIMI	r = .050	GUIDELINE =	24.0 (B
JAN	! SM	.150	UCS	•	.100 UCS	
MAR	BDL	BDL		•	BDL	
APR	BDL	.050	UCS	•	.050 UCS	
MAY	BDL	BDL		-		
JUN	.050 <t< td=""><td>.100</td><td><ī</td><td></td><td>BDL</td><td></td></t<>	.100	<ī		BDL	
JUL	BDL	BDL		•	BDL	
AUG	BDL	BDL			BDL	
SEP	BDL	BDL		•	8DL	
OCT	8DL	NSS		•	BDL	
NOV	BDL	BDL		•	BDL	
DEC	BDL	.100	<t< td=""><td>•</td><td>•</td><td></td></t<>	•	•	
THYLBENZENE (UG/L)		DET'N LIM	IT = .050	GUIDELINE =	2.4 (B4
JAN	ISM	.050	<t< td=""><td></td><td>BDL</td><td></td></t<>		BDL	
MAR	BDL	.050	<1	•	BDL	
APR	BDL	.050	<آ		BDL	
MAY	.100 <ī	.100	<ī	•	•	
JUN	.050 <t< td=""><td>.050</td><td><t< td=""><td>•</td><td>.100 <t< td=""><td></td></t<></td></t<></td></t<>	.050	<t< td=""><td>•</td><td>.100 <t< td=""><td></td></t<></td></t<>	•	.100 <t< td=""><td></td></t<>	
JUL	BDL	.050	<ī	•	BDL	
AUG	.100 <t< td=""><td>. 100</td><td><t< td=""><td></td><td>.050 <t< td=""><td></td></t<></td></t<></td></t<>	. 100	<t< td=""><td></td><td>.050 <t< td=""><td></td></t<></td></t<>		.050 <t< td=""><td></td></t<>	
SEP	BDL	.050	<۲		.050 <t< td=""><td></td></t<>	
OCT	BDL	NSS		•	BDL	
NOV	BDL	.050	<1		BDL	
DEC	BDL	.100	<1	•		

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1988 DISTRIBUTION SYSTEM WATER TREATMENT PLANT TREATED SITE 1 RA₩ STANDING FREE FLOW DET'N LIMIT = .500GUIDELINE = 1750 (D3)METHYLENE CHLORIDE (UG/L) **BDL** 2.000 <T ! SM JAN BDL BDL BDL MAR BDL BDL BDL APR BDL BDL . MAY BDL BDL BDL JUN BDL BDL BDL. JUL BDL BDL 8DL AUG BDL BDL SEP BDL BDL NSS BDL OCT BDL BDL BDL NOV BDL BDL DEC _____ GUIDELINE = 350 (A1+) DET'N LIMIT = .100CHLOROFORM (UG/L) 17.500 8.800 I SM JAN . 9.900 7.300 MAR BDL BDL 6.200 7.900 APR . MAY BDL BDL JUN BDL 9.400 9.300 JUL BDL 7.900 7.700 .300 <T 8.200 6.600 AUG .300 <T 7.200 9.200 SEP 5.800 NSS OCT BDL .100 <T 11.700 11.200 NOV .100 <T 6.100 DEC GUIDELINE = 5.0 (D1) CARBON TETRACHLORIDE (UG/L) DET'N LIMIT = .200 JAN ! SM BDL BDL MAR BDL BDL BDL BDL APR 8DL 8DL

BDL

BDL

BDL

BDL

NSS

BDL

13.850

8.300

1.200 <T

.

DET'N LIMIT = .050

.600 <T

. 200 <ĭ

BDL

BOL

BDL

8DL

8DL

7.900

6.700

GUIDELINE = 350 (A1+)

8DL

BDL

BDL

BDL

BDL

BDL

BDL

! SM

BDL

BDL .

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

JAN

MAR

DICHLOROBROMOMETHANE (UG/L)

	WATER	TREATMENT PLANT		DISTRIBUTION SYSTEM
	RAW	TREATED	SITE 1	
			STANDING	FREE FLOW
JUL	BDL	.600	<ī.	.400 <t< td=""></t<>
AUG	BDL	.600	<ī .	.600 <t< td=""></t<>
SEP	BDL	.800	<tt .<="" td=""><td>.800 <t< td=""></t<></td></tt>	.800 <t< td=""></t<>
OCT	BDL	NSS		,600 <t< td=""></t<>
NOV	BDL	1.000	<ĭ.	1.000 <t< td=""></t<>
DEC	BDL	.600	<ĭ .	•
TOTL TRIHALO	METHANES (UG/L)	DET'N LIMIT = .50	0 GUIDELINE = 350 (A1)
JAN	! SM	43.150		23.100
MAR	BDL	25.000	•	20.800
APR	BDL	16.400		19.100
MAY	BDL	15.800		
JUN	BDL	23.000	•	22.650
JUL	BDL	19.450	•	18.700
JUL AUG	BDL BDL	19.450 20.600	•	18.700 19.300
JUL AUG SEP	BDL BDL BDL	19.450 20.600 22.650	•	18.700 19.300 27.200
JUL AUG SEP OCT	BDL BDL BDL BDL	19.450 20.600 22.650 NSS	•	18.700 19.300 27.200 17.000
JUL AUG SEP OCT NOV	BDL BDL BDL BDL BDL	19.450 20.600 22.650 NSS 29.500	• • •	18.700 19.300 27.200 17.000 27.200

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1988

TABLE 5

	D	ETECTION	ſ	
<u>SCAN/PARAMETER</u>	UNIT	<u>LIMIT</u>	GUIDELIN	E
BACTERIOLOGICAL				
STANDARD PLATE COUNT MEMBRANE	CT/ML	0	500/ML(A	1)
FILTRATION				
P/A BOTTLE		0	(A) 0	.*)
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100mL(A	11)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A	
Chloroaromatics				
HEXACHLOROBUTADIENE	NG/L	1.000	450. (I)4)
1,2,3-TRICHLOROBENZENE	NG/L	5.000	10000	(I)
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.000	10000	(I)
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.000	10000	(I)
1,2,4-TRICHLOROBENZENE	NG/L	5.000	10000	(I)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.000	38000 (1)4)
1,3,5-TRICHLOROBENZENE	NG/L	5.000	10000 (1)4)
HEXACHLOROBENZENE	NG/L	1.0	10. (0	C1)
HEXACHLOROETHANE	NG/L	1.000	1900. (1	D4)
OCTACHLOROSTYRENE	NG/L	1.000	N/A	
PENTACHLOROBENZENE	NG/L	1.000	74000 (1	D4)
2,3,6-TRICHLOROTOLUENE	NG/L	5.000	N/A	•
2,4,5-TRICHLOROTOLUENE	NG/L	5.000	N/A	
2,6,A-TRICHLOROTOLUENE	NG/L	5.000	N/A	
			•	
Chlorophenols				
2.3.4-TRICHLOROPHENOL	NG/L	50.	N/A	
2.3.4.5-TETRACHLOROPHENOL	NG/L	50.	N/A	
2.3.5.6-TETRACHLOROPHENOL	NG/L	50.	N/A	
2, 4, 5-TRICHLOROPHENOL	NG/L	50. 2	600000 ()	D4)
2, 4, 6-TRICHLOROPHENOL	NG/L	50.	5000. (1	R1)
PENTACHLOROPHENOI.	NG/L	50.	60000. ()	B1)
CHEMISTRY (FLD)	*			
FIELD COMBINED CHLORINE RESIDUAL	MG/L	N/A	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	N/A	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	N/A	N/A	
FIELD PH	DMSNLESS	N/A	6.5-8.50	84)
FIELD TEMPERATURE	°C	N/A	<15 °C(A	1)
FIELD TURBIDITY	FTU	N/A	1.0 (2	A1)
		·	•	
CHEMISTRY (LAB)				
ALKALINITY	MG/L	.200	30-500 (2	A4)
CALCIUM	MG/L	.100	100. (F2)
CYANIDE	MG/L	.001	. 20 (2	A1)
CHLORIDE	MG/L	.200	250. ()	A3)
COLOUR	TCU	. 5	5.0 ()	A3)
CONDUCTIVITY	UMHO/CM	1.	400. (F2)
FLUORIDE	MG/L	.01	2.4 ()	A1)
HARDNESS	MG/L	. 50	80-100 (2	A4)
MAGNESIUM	MG/L	.05	30. (2	F2)

Table 6

ı

	DETECTION			
SCAN/PARAMETER	UNIT	I.IMIT GUIDEI	LINE	
	خلاصات المتكركي		<u>Lander record</u> a	
HEPTACHLOR	NG/L	1.0 3000.	(A1)	
METOLACHLOR	NG/L	500. 50000.	(83)	
MIREX	NG/L	5.0 N/A	(/	
OXYCHLORDANE	NG/L	2.0 N/A		
O.P-DDT	NG/L	5 0 30000.	(A1)	
PCR	NG/T	20 0 3000	(22)	
0.9-000	NG/L	5 0 N/A	(
PPDDR	NG/I.	1 0 30000	(A1)	
PPDDT	NG/L	5 0 30000.	(A1)	
ATRATONE	NG/L	50 N/A	(****)	
ALACHLOR	NG/L	500 35000.	(D2)	
PROMETONE	NG/L	50 52500.	(D3)	
PROPAZINE	NG/L	50 16000.	(D2)	
PROMETRYNE	NG/L	50. 1000.	(B3)	
SENCOR (METRIBUZIN)	NG/L	100. 80000.	(82)	
SIMAZINE	NG/L	50. 10000.	(83)	
	110/2		(00)	
POLYAROMATIC HYDROCARBONS				
PHENANTHRENE	NG/L	10.0 N/A		
ANTHRACENE	NG/L	1.0 N/A		
FLUORANTHENE	NG/L	20.0 42000.	(D4)	
PYRENE	NG/L	20.0 N/A	· ·	
BENZO (A) ANTHRACENE	NG/L	20.0 N/A		
CHRYSENE	NG/L	50.0 N/A		
DIMETHYL BENZO(A)ANTHRACENE	NG/L	5.0 N/A		
BENZO(E)PYRENE	NG/L	50.0 N/A		
BENZO (B) FLUORANTHENE	NG/L	10.0 N/A		
PERYLENE	NG/L	10.0 N/A		
BENZO (K) FLUORANTHENE	NG/L	1.0 N/A		
BENZO (A) PYRENE	NG/L	5.0 10.	(B1)	
BENZO(G,H,I)PERYLENE	NG/L	20.0 N/A		
DIBENZO (A, H) ANTHRACENE	NG/L	10.0 N/A		
INDENO(1,2,3-C,D)PYRENE	NG/L	20.0 N/A		
BENZO (B) CHRYSENE	NG/L	2.0 N/A		
CORONENE	NG/L	10.0 N/A		
SPECIFIC PESTICIDES				
TOXAPHENE	NG/L	N/A 5000.	(Al)	
2,4,5-TRICHLOROBUTYRIC ACID	NG/L	50. 280000.	(B1)	
(2,4,5-T)				
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100. 100000.	(Al)	
2,4-DICHLORORPHENOXYBUTYRIC ACID	NG/L	200. 18000.	(83)	
2,4-D PROPIONIC ACID	NG/L	100. N/A		
DICAMBA	NG/L	100. 87000.	(B3)	
PICHLORAM	NG/L	100. 2450000.	(D3)	
SILVEX (2,4,5-TP)	NG/L	50. 10000.	(Al)	
DIAZINON	NG/L	20. 14000.	(A1)	
DICHLOROVOS	NG/L	20. N/A		
DURSBAN	NG/L	20. N/A		
ETHION	NG/L	20. 35000.	(G)	
GUTHION	NG/L	n/a n/a		
MALATHION	NG/L	20. 160000.	(G)	
MEVINPHOS	NG/L	20. N/A		
METHYL PARATHION	NG/L	50. 7000.	(B3)	
METHYLTRITHION	NG/L	20. N/A		
PARATHION	NG/L	20. 35000.	(B1)	

,